منابع مشابه
On Antimagic Labeling of Odd Regular Graphs
An antimagic labeling of a finite simple undirected graph with q edges is a bijection from the set of edges to the set of integers {1, 2, · · · , q} such that the vertex sums are pairwise distinct, where the vertex sum at vertex u is the sum of labels of all edges incident to such vertex. A graph is called antimagic if it admits an antimagic labeling. It was conjectured by N. Hartsfield and G. ...
متن کاملRegular Graphs are Antimagic
In this note we prove with a slight modification of an argument of Cranston et al. [2] that k-regular graphs are antimagic for k ≥ 2.
متن کاملConstructions of antimagic labelings for some families of regular graphs
In this paper we construct antimagic labelings of the regular complete multipartite graphs and we also extend the construction to some families of regular graphs.
متن کاملRegular bipartite graphs are antimagic
A labeling of a graph G is a bijection from E(G) to the set {1, 2, . . . , |E(G)|}. A labeling is antimagic if for any distinct vertices u and v, the sum of the labels on edges incident to u is different from the sum of the labels on edges incident to v. We say a graph is antimagic if it has an antimagic labeling. In 1990, Ringel conjectured that every connected graph other than K2 is antimagic...
متن کاملAntimagic labeling and canonical decomposition of graphs
An antimagic labeling of a connected graph with m edges is an injective assignment of labels from {1, . . . , m} to the edges such that the sums of incident labels are distinct at distinct vertices. Hartsfield and Ringel conjectured that every connected graph other than K2 has an antimagic labeling. We prove this for the classes of split graphs and graphs decomposable under the canonical decomp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Graph Theory
سال: 2015
ISSN: 0364-9024
DOI: 10.1002/jgt.21905